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Abstract. Several nonlinear Lagrangian formulations have been recently proposed for

bounded integer programming problems. While possessing an asymptotic strong duality
property, these formulations offer a success guarantee for the identification of an optimal
primal solution via a dual search. Investigating common features of nonlinear Lagrangian

formulations in constructing a nonlinear support for nonconvex piecewise constant pertur-
bation function, this paper proposes a generalized nonlinear Lagrangian formulation of which
many existing nonlinear Lagrangian formulations become special cases.
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1. Introduction

We consider in this paper the following singly constrained bounded integer
programming problem:

minffðxÞ : gðxÞO 0; x 2 Xg; ð1Þ
where f and g : Rn ! R are continuous functions and X is a finite integer set.
Note that an integer programming problem with multiple constraints can be
always converted into an equivalent singly constrained problem by a nonlin-
ear surrogate constraint method proposed in [4]. We thus concentrate our
study in this paper on singly constrained problems for simplicity. Problem
(1) is called the primal problem whose feasible region is given as follows:

S ¼ fx 2 X : gðxÞO0g: ð2Þ
Without loss of generality, we make the following two assumptions:

ASSUMPTION 1. S 6¼ ;.

ASSUMPTION 2. fðxÞ > 0; for all x 2 X.

Assumption 2 can be always satisfied by performing certain equivalent
transformations on problem (1), for example, applying an exponential
transformation on its objective function.
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The concept of duality has been playing a significant role in optimization
and Lagrangian methods [1–3, 8, 11] have been widely adopted in finding
an optimal solution. Incorporating the constraint into the objective func-
tion by introducing a nonnegative Lagrangian multiplier, kP0, yields a
Lagrangian relaxation:

/ðkÞ ¼ min
x2X

Lðx; kÞ ¼ fðxÞ þ kgðxÞ: ð3Þ

The Lagrangian dual is a maximization problem in k;

max
k�0

/ðkÞ: ð4Þ

However, the conventional Lagrangian method often fails to identify an
optimal solution of the primal integer programming problem. As pointed
out in [6], there are two critical situations that would prevent the Lagrang-
ian method from succeeding in the dual search. In the first situation no
optimal solution of (1) can be generated by solving (3) for any kP0: In the
second situation the optimal solution of (3) with k� being a solution to the
dual problem (4) is not an optimal solution to (1). One main reason behind
these two kinds of failures is that there does not exist at the optimal point a
linear support of the nonconvex piecewise-constant perturbation function.
Recent years have witnessed an extension from the traditional linear

Lagrangian theory to an emerging nonlinear Lagrangian theory for integer
programming [5, 6, 10, 12, 13]. The key concept in introducing nonlinear
Lagrangian formulations is the construction of a nonlinear support of the per-
turbation function at the optimal point. While possessing an asymptotic strong
duality property, the nonlinear Lagrangian formulations offer a success guar-
antee for the identification of an optimal primal solution via a dual search.
There could be many different forms of nonlinear supports. A natural

question arisen is what are the common characteristics of various nonlinear
Lagrangian formulations. Furthermore, what is a general form of nonlin-
ear functions of the objective function f and the constraint function g that
can serve as a nonlinear Lagrangian function? To be qualified as a nonlin-
ear Lagrangian function, we require that the corresponding nonlinear
Lagrangian formulation guarantee the identification of an optimal solution
of the primal problem via a dual search.
In this paper, a generalized nonlinear Lagrangian formulation for

bounded integer programming is presented. The proposed general formula-
tion includes many specific nonlinear Lagrangian formulations proposed in
the literature as its special cases. This generalized nonlinear Lagrangian
formulation possesses an asymptotic strong duality property while it offers
a success guarantee for the identification of a primal optimal solution via
dual search. Another feature of this generalized nonlinear Lagrangian for-
mulation is that no actual dual search is needed when the parameter in the
formulation exceeds certain threshold.
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The structure of the paper is as follows. Background and motivation of
this research are given in Section 2. A new generalized Lagrangian formu-
lation is introduced in Section 3 and its strong dual property is proved
there too. The unimodality of the dual function is proved in Section 4. An
attractive feature of the generalized Lagrangian formulation that no actual
dual search is needed in searching for a primal optimal solution is derived
in Section 5. Illustrative examples are provided in Section 6. Finally, a con-
clusion is drawn in Section 7.

2. Motivation

In this section, we investigate the perturbation function associated with
problem (1). This study provides new insights into prominent features of
nonlinear supports in nonlinear Lagrangian formulations.
A perturbation function of problem (1) with a single constraint is defined

as follows for z1 2 R:

wðz1Þ ¼ minffðxÞ : gðxÞOz1;x 2 Xg: ð5Þ
The domain of wð�Þ is

F ¼ fz1 2 R : there exists x 2 X such that gðxÞOz1g:
Since X is finite, it is clear that the function wð�Þ is a nonincreasing piece-
wise-constant function of z1 and is continuous from right. Let z ¼ ðz1; z2Þ
and define a set in R2:

E ¼ fz : z2 ¼ wðz1Þ; z1 2 Fg: ð6Þ
As defined, E is defining the function w over F. Geometrically, E is the
lower envelope of the image of X in the ðz1; z2Þ plane under the mapping
ðgðxÞ; fðxÞÞ. Obviously, the image of the primal optimum point, P�, is a
point on E. To identify this optimal point on a nonincreasing piece-
wise-constant curve w, we need a class of functions whose nonlinear con-
cave contours can support E at point P�.
Sun and Li [10] constructed the following function in a nonlinear

Lagrangian formulation,

C1
pðz1; z2; kÞ ¼

1

p
ln

1

2
ðexpðpz2Þ þ expðpkz1ÞÞ

� �
; ð7Þ

where p is a parameter and kP0 is the Lagrangian multiplier of the nonlin-
ear Lagrangian formulation. The domain of z1 in contour C1

pðz1; z2; kÞ ¼ a
for any positive constant a and any k > 0 is ð�1; ðlnð2Þ=pþ aÞ=kÞ. The
slope at any point ðz1; z2Þ on the contour C1

pðz1; z2; kÞ ¼ a is

dz2
dz1
¼ � k

2 expðpða� kz1ÞÞ � 1
: ð8Þ

Formula (8) possesses following features:
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dz2
dz1

< 0; k > 0; z1 2 ð�1; ðlnð2Þ=pþ aÞ=kÞ; ð9Þ

dz2
dz1
! 0; p!1; z1 2 ð�1; a=kÞ; ð10Þ

dz2
dz1
! �1; k!1; z1 2 ð0; ðlnð2Þ=pþ aÞ=kÞ: ð11Þ

Xu and Li [12] gave another function in their study of nonlinear Lagrangian
theory,

C2
pðz1; z2; kÞ ¼ z2 þ

expðkz1Þ
k

; k > p > 0; ð12Þ
where p is a parameter and k is the Lagrangian multiplier of the nonlinear
Lagrangian formulation. The domain of z1 in contour C2

pðz1; z2; kÞ ¼ a for
any positive constant a and any k > p > 0 is ð�1; lnðkaÞ=kÞ. The slope at
any point ðz1; z2Þ on the contour C2

pðz1; z2; kÞ ¼ a is

dz2
dz1
¼ � expðkz1Þ: ð13Þ

Formula (13) also possesses the similar features as formula (8):

dz2
dz1

< 0; k > 0; z1 2 �1; lnðkaÞ
k

� �
; ð14Þ

dz2
dz1
! 0; p!1; z1 2 ð�1; 0Þ; ð15Þ

dz2
dz1
! �1; k!1; z1 2 0;

lnðkaÞ
k

� �
: ð16Þ

We can observe some common properties in both nonlinear Lagrangian
formulas (7) and (12). In view of (9) and (14), z2 in both formulas is a
strictly decreasing function of z1 in its domain when k > 0. Furthermore,
(10), (11), (15) and (16) reveal that, if p is chosen large enough, the value
of z2 on either C1

pðz1; z2; kÞ ¼ a or C2
pðz1; z2; kÞ ¼ a would decrease very

slowly when z1 is negative, while, if k is chosen large enough, it would
decrease rapidly when z1 is positive. Geometrically, when parameters p and
k are set large enough for negative and positive z1, respectively, both con-
tours of C1

pðz1; z2; kÞ ¼ a and C2
pðz1; z2; kÞ ¼ a approach a horizontal line

when z1 is negative and a vertical line when z1 is positive, and possess a
right angle at z1 ¼ 0. Such curves can be considered as an approximation
of a shifted negative octant which can support any nonincreasing perturba-
tion function, no matter it is nonconvex or not. Hence, such contours offer
a nonlinear support to E, and ensure a unique support at the point P�,
where a linear support in terms of z1 and z2 may not exist.
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The discussion above inspires us to explore what is the essence of the
nonlinear Lagrangian formulations and to construct a general nonlinear
Lagrangian function Cpðz1; z2; kÞ based on the features exhibited in nonlin-
ear Lagrangian formulas (7) and (12).
Let the contour of a nonlinear Lagrangian function be Cpðz1; z2; kÞ ¼ a.

We have

dz2
dz1
¼ � @Cpðz1; z2; kÞ=@z1

@Cpðz1; z2; kÞ=@z2
: ð17Þ

In view of (9)–(12), (14)–(17), we can draw some conclusions as follows.

� A sufficient condition for (9) and (14) to hold is that Cpðz1; z2; kÞ is
strictly increasing with respect to both z1 and z2 for any k > 0.

� If @Cpðz1; z2; kÞ=@z2 has a strictly positive lower bound, then (10) and
(15) imply that @Cpðz1; z2; kÞ=@z1 ! 0 for negative z1 as p!1. This
means that Cpðz1; z2; kÞ becomes independent of z1 for sufficiently
large p.

� (11) and (16) are equivalent to

@Cpðz1; z2; kÞ=@z1
@Cpðz1; z2; kÞ=@z2

!1 as k! þ1 for any x 2 X n S:

If @Cpðz1; z2; kÞ=@z2 has a strictly positive lower bound, then it must hold
that @Cpðz1; z2; kÞ=@z1 ! þ1 as k! þ1 for any positive z1. This implies
Cpðz1; z2; kÞ ! 1 as k! þ1 for any positive z1.

3. Generalized Lagrangian formulation

We propose in this section a general form for nonlinear Lagrangian formu-
lation and prove its asymptotic strong duality property.
From the analysis in the last section, a generalized Lagrangian function

(GLF) should satisfy the followings: (i) For any x 2 X n S, GLF tends to
infinity as k tends to infinity; and (ii) for any x 2 S, GLF does not depend
on gðxÞ when parameter p is sufficiently large. If we let GLF converge to
fðxÞ as parameter p becomes sufficiently large, then the GLF will not
depend on gðxÞ. Now we introduce the definition of GLF.

DEFINITION 1. A continuous function LpðgðxÞ; fðxÞ; kÞ with parameters
p > 0 and k > 0 is called a generalized Lagrangian function (GLF) of
problem (1) if it satisfies the following two conditions:

(i) For any x 2 S, LpðgðxÞ; fðxÞ; kÞ ! fðxÞ as p!1.
(ii) For any x 2 XnS, LpðgðxÞ; fðxÞ; kÞ ! þ1 as k!1.

In view of Definition 1, the conventional linear Lagrangian function
Lðx; kÞ= fðxÞ+ kgðxÞ is not a GLF, since the condition (i) of Definition 1 is
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unsatisfied, i.e., Lðx; kÞ 6! fðxÞ for any x 2 S. Now we list some candidates
of GLF. It is easy to conclude that these examples satisfy two conditions in
Definition 1.

EXAMPLE 1. The logarithmic-exponential Lagrangian function of problem
(1) defined in [10],

LpðgðxÞ; fðxÞ; kÞ ¼
1

p
ln

1

2
expðpfðxÞÞ þ expðpkgðxÞÞð Þ

� �
;

is a GLF, where k P 0.

EXAMPLE 2. The exponential Lagrangian function defined in [12],

LpðgðxÞ; fðxÞ; kÞ ¼ fðxÞ þ 1

k
expðkgðxÞÞ; kPp > 0;

is a GLF.

EXAMPLE 3. The logarithmic-exponential penalty function defined in [9],

LpðgðxÞ; fðxÞ; kÞ ¼ fðxÞ þ k
p
ln 1þ expðkgðxÞÞ½ �;

is a GLF.

EXAMPLE 4. The following function is also a GLF:

LpðgðxÞ; fðxÞ; kÞ ¼ fðxÞp þ expðpkgðxÞÞ½ �1=p:
We present some properties of a GLF in the following lemma without proof,

since they are clear from the definition of LpðgðxÞ; fðxÞ; kÞ in Definition 1.

LEMMA 1. (i) For a given x 2 S and any e > 0, there exists a pðx; eÞ > 0
such that for p > pðx; eÞ,
fðxÞ � eOLpðgðxÞ; fðxÞ; kÞOfðxÞ þ e: ð18Þ

(ii) For a given x 2 X n S and any M > 0, there exists a kðx;MÞ > 0
such that for k > kðx;MÞ,
LpðgðxÞ; fðxÞ; kÞPM: ð19Þ

The GLF-based Lagrangian relaxation problem associated with (1) is
defined as

/pðkÞ :¼ min
x2X

LpðgðxÞ; fðxÞ; kÞ: ð20Þ

Further, the GLF-based Lagrangian dual problem associated with (1) is
defined as

Dp :¼ max
k�0

/pðkÞ: ð21Þ

Now we prove the asymptotic strong duality property of the generalized
Lagrangian formulation given in (20) and (21). For simplicity, denote
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f � ¼ min
x2S

fðxÞ:

From Assumption 2, we have f � > 0.

THEOREM 1. (Asymptotic Strong Duality Property). Suppose that
LpðgðxÞ; fðxÞ; kÞ is a GLF and Dp is defined by ð20Þ and ð21Þ. Then

lim
p!1

Dp ¼ f �:

If S ¼ X, then limp!1Dp ¼ minx2S fðxÞ holds trivially by (20), (21) and
part (i) of Lemma 1. Now suppose X n S 6¼ ;. Again from part (i) of
Lemma 1, for any e > 0 and sufficiently large p, we have

Dp ¼max
k�0

min
x2X

LpðgðxÞ; fðxÞ; kÞ

Omax
k�0

min
x2S

LpðgðxÞ; fðxÞ; kÞ

Omax
k�0

min
x2S
ðfðxÞ þ eÞ

¼f � þ e: ð22Þ
Now we assert that for any sufficiently large p > 0, there exists a k > 0
such that

min
x2XnS

LpðgðxÞ; fðxÞ; kÞPmin
x2X

LpðgðxÞ; fðxÞ; kÞ: ð23Þ

Suppose that, on the contrary, there exists no k > 0 such that (23) holds.
Then, for any k > 0, we have

DpP/pðkÞ
¼minf min

x2XnS
LpðgðxÞ; fðxÞ; kÞ;min

x2S
LpðgðxÞ; fðxÞ; kÞg

¼ min
x2XnS

LpðgðxÞ; fðxÞ; kÞ: ð24Þ

Let M ¼ f � þ 2e. From part (ii) of Lemma 1, 8x 2 XnS, there exists a k̂ > 0
such that LpðgðxÞ; fðxÞ; k̂ÞPf � þ 2e. Setting k ¼ k̂, we get from (24) that

DpP min
x2XnS

LpðgðxÞ; fðxÞ; k̂ÞPf � þ 2e: ð25Þ

Equation (25) shows a contradiction to (22). Therefore, there must exist a
k� > 0 such that (23) holds. In views of part (i) of Lemma 1 and (23), we have

DpP/pðk�Þ
¼minf min

x2XnS
LpðgðxÞ; fðxÞ; k�Þ;min

x2S
LpðgðxÞ; fðxÞ; k�Þg

¼min
x2S

LpðgðxÞ; fðxÞ; k�Þ

Pf � � e: ð26Þ
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Combining (22) and (26) yields that for any e > 0 and sufficiently large
p > 0, we have f � � eODpOf � þ e. This comes to the conclusion.
Theorem 1 reveals that the optimal value of the Lagrangian dual prob-

lem attains the optimal value of primal problem (1) when p approaches
infinity. In implementation, we are more interested in achieving the primal
optimality with a finite p. Once the parameter p exceeds a threshold, an
optimal solution of primal problem (1) can be identified by the proposed
generalized nonlinear Lagrangian formula. For convenience, the following
two notations are introduced,

S � ¼ fx 2 S : fðxÞ ¼ f �g;

d ¼ minffðxÞ : x 2 SnS�g � f �:

LEMMA 2. There exists a p� > 0 such that for any p > p�, any optimum
solution x� of ð20Þ satisfying x� 2 S is an optimal solution of problem ð1Þ.
In view of part (i) of Lemma 1 and Theorem 1, given e ¼ d=4, there

exists p� such that for any p > p�,

fðx�Þ � eOLpðgðx�Þ; fðx�Þ; kÞ ¼ min
x2X

LpðgðxÞ; fðxÞ; kÞOf � þ e:

Hence

fðx�Þ � f � � 2e ¼ d
2
:

This implies x� 2 S� by the definition of d.

4. The unimodality of dual function

In this section, we continue to explore the properties of LpðgðxÞ; fðxÞ; kÞ
and the dual formulas in (20) and (21). Specifically, we will show the
unimodality of the dual function. Notice that the dual function in the tra-
ditional linear Lagrangian framework is concave, thus possessing the un-
imodality. The dual function in nonlinear Lagrangian in general is not
concave as witnessed in [10]. On the other hand, the property of the
unimodality will also guarantee that a local maximum of the dual function
is also a global maximum, thus facilitating the dual search.
From the analysis in Section 2, the monotonically increasing property of

a nonlinear Lagrangian function with respect to both fðxÞ and gðxÞ is
another desirable feature of nonlinear Lagrangian functions. Attaching this
property to the definition of a GLF leads to the definition of a regular GLF.

DEFINITION 2. A GLF is called regular if it satisfies following additional
three conditions:

(i0) For any x 2 X nS, LpðgðxÞ; fðxÞ; kÞ is strictly increasing with respect
to k.
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(ii0) For given k > 0, LpðgðxÞ; fðxÞ; kÞ is strictly increasing with respect
to both gðxÞ and fðxÞ.

(iii0) For any x 2 S, LpðgðxÞ; fðxÞ; kÞ is decreasing with respect to k.

It is easy to verify that the nonlinear Lagrangian functions in Examples
1, 3 and 4 are all regular, while the nonlinear Lagrangian function in
Example 2 is regular when parameter p exceeds a certain threshold.
Observe that the perturbation function wð�Þ defined by (5) is continuous

from right and the domain F of wð�Þ is an interval. By the finiteness of X,
the number of the discontinues points of wð�Þ is finite. Without loss of gen-
erality, list them as fa1; . . . ; aKþLg with

a1 < a2 < � � � < aKO0 < aKþ1 < � � � < aKþL: ð27Þ
By Assumption 1, we have KP1. Let bi ¼ wðaiÞ, for i ¼ 1; . . . ;Kþ L.
Observe that the perturbation function is nonincreasing and its discontin-
ues points are strictly decreasing. We have from (5) and Assumption 2 that

b1 > b2 > � � � > bK > bKþ1 > � � � > bKþL > 0: ð28Þ
Let

SðEÞ ¼ fðai; biÞ 2 R2 : i ¼ 1; . . . ;Kþ Lg: ð29Þ
It is clear that point ðz1; z2Þ 2 SðEÞ if and only if ðz1; z2Þ 2 E, the lower
envelope set defined by (6), and ðẑ1; z2Þ j2E for any ẑ1 < z1. Point ðai; biÞ is
associated with a feasible solution of problem (1) when 1OiOK and with
an infeasible solution of problem (1) when Kþ 1OiOKþ L.

LEMMA 3. (1) For any p > 0, if x� is an optimum solution of (20) for a
given k > 0, then ðgðx�Þ; fðx�ÞÞ 2 SðEÞ.

(2) There exists at least one optimum solution x� 2 S� such that
ðgðx�Þ; fðx�ÞÞ 2 SðEÞ.

For the first part, suppose that ðgðx�Þ; fðx�ÞÞ 2 E, but ðgðx�Þ; fðx�ÞÞ j2SðEÞ.
Then, by the definitions of E and SðEÞ in (6) and (29), there exists an x̂ 2 X
such that fðx̂ÞOfðx�Þ and gðx̂Þ < gðx�Þ. Hence, by (ii¢) of Definition 2, for
any p > 0, we have Lpðgðx̂Þ; fðx̂Þ; kÞ < Lpðgðx�Þ; fðx�Þ; kÞ. This is a contra-
diction to the optimality of x� in (20).
For the second part, it is clear that ðgðxÞ; fðxÞÞ 2 E holds for any x 2 S�.

Let x� 2 argfgðyÞ : y 2 S�g. For any z1 < gðx�Þ, we have S� \ fx : gðxÞO
z1;x 2 Xg ¼ /. So, wðz1Þ > fðx�Þ, which implies ðz1; fðx�ÞÞ j2E. Hence,
ðgðx�Þ; fðx�ÞÞ 2 SðEÞ. We complete the proof.
Let

l ipðkÞ ¼ Lpðai; bi; kÞ; i ¼ 1; . . . ;Kþ L: ð30Þ

Then by Lemma 3, we have

/pðkÞ ¼ min
x2X

LpðgðxÞ; fðxÞ; kÞ ¼ min
1OiOKþL

l ipðkÞ: ð31Þ
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The theorem below reveals that the function defined by (20) is a unimodal
function when p is sufficiently large. Denote I ¼ I1 [ I2, where I1 ¼ fij1O
iOKg and I2 ¼ fijKþ 1OiOKþ Lg.

THEOREM 2. Suppose that LpðgðxÞ; fðxÞ; kÞ is a regular GLF. Then, for any
p > 0, there exists a k�ðpÞ > 0 such that the dual function /pðkÞis mono-
tonically increasing in ½0; k�ðpÞ� and monotone decreasing in ½k�ðpÞ;1Þ.
First, we prove that for any p > 0, if there exists k1 > 0 such that

/pðk1Þ ¼ l i1p ðk1Þ, where i1 2 I1, then for any k2 > k1, there must be
/pðk2Þ ¼ l i2p ðk2Þ satisfying i2 2 I1. Suppose, on the contrary, that there
exists a k2 > k1 such that

/pðk2Þ ¼min
i2I

l ipðk2Þ

¼minfmin
i2I1

l ipðk2Þ;min
i2I2

l ipðk2Þg

¼min
i2I2

l ipðk2Þ

¼l i2p ðk2Þ; i2 2 I2:

Then for any i 2 I1,

/pðk2Þ ¼ l i2p ðk2ÞOl ipðk2Þ: ð32Þ

From (iii0) of Definition 2, LpðgðxÞ; fðxÞ; kÞ is decreasing about k when
x 2 S. Hence, for given i1 2 I1, we have

l i1p ðk2ÞOl i1p ðk1Þ: ð33Þ

Since /i1
p ðk1Þ ¼ l i1p ðk1Þ, where i1 2 I1, then for given i2 2 I2 in (32) we have

l i1p ðk1ÞOli2p ðk1Þ: ð34Þ
Combining (32)–(34), we obtain

li1p ðk1ÞOl i2p ðk1Þ < l i2p ðk2ÞOli1p ðk1Þ; ð35Þ

where the second inequality holds from item (i0) of Definition 2 and
k1 < k2. This is a contradiction.
In the same way, we can also assert that for given p > 0, if there exists

k1 > 0 such that /pðk1Þ ¼ li1p ðk1Þ; i1 2 I2, then for any 0 < k2 < k1, there
must be /pðk2Þ ¼ l i2p ðk2Þ; i2 2 I2.
The conclusions above imply that there exists k�ðpÞ > 0 such that for

any k 2 ½0; k�ðpÞ�, /pðkÞ ¼ l ipðkÞ with i 2 I2 and for any k 2 ½k�ðpÞ;1Þ,
/pðkÞ ¼ l ipðkÞ with i 2 I1. Since the function l ipðkÞ corresponding to i 2 I2 is
increasing by (i¢) of Definition 2 and that corresponding to i 2 I1 is
decreasing by (iii¢) of Definition 2, the conclusion is true.
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From Theorem 2, we can immediately obtain a corollary as follows.

COROLLARY 1. For any p > 0, the dual problem (21) has a unique finite
solution k�ðpÞ.

5. Primal optimum solution via Lagrangian relaxation

In this section, we focus on how to obtain a primal optimum solution
of problem (1) by solving a Lagrangian relaxation problem. The theo-
rem below reveals that no actual dual search is needed when p is large
enough.

LEMMA 4. Suppose that LpðgðxÞ; fðxÞ; kÞ is a regular GLF. Then, for any
p > 0 and the corresponding k�ðpÞ, there exists at least one optimal solution
x� of problem ð20Þ such that x� is a primal feasible solution of problem ð1Þ.
Suppose that the optimal solutions of (20) corresponding to k�ðpÞ are all

primal infeasible. Then, we have

g ¼ min
x2S

LpðgðxÞ; fðxÞ; k�ðpÞÞ � min
x2XnS

LpðgðxÞ; fðxÞ; k�ðpÞÞ > 0: ð36Þ

For any x 2 S, by the continuity of LpðgðxÞ; fðxÞ; kÞ, there exists an e1 > 0
such that for any 0OeOe1,

LpðgðxÞ; fðxÞ; k�ðpÞ þ eÞ > LpðgðxÞ; fðxÞ; k�ðpÞÞ �
g
2
;

which implies

min
x2S

LpðgðxÞ; fðxÞ; k�ðpÞ þ eÞ > min
x2S

LpðgðxÞ; fðxÞ; k�ðpÞÞ �
g
2
: ð37Þ

Similarly, there exists an e2 > 0 such that for any 0OeOe2,

min
x2XnS

LpðgðxÞ; fðxÞ; k�ðpÞ þ eÞ < min
x2XnS

LpðgðxÞ; fðxÞ; k�ðpÞÞ þ
g
2
: ð38Þ

Notice that

min
x2S

LpðgðxÞ; fðxÞ; k�ðpÞÞ �
g
2
¼ min

x2XnS
LpðgðxÞ; fðxÞ; k�ðpÞÞ þ

g
2
: ð39Þ

Choose an e satisfying 0 < e < minfe1; e2g. Then we have from (37), (38)
and (39) that

min
x2S

LpðgðxÞ; fðxÞ; k�ðpÞ þ eÞ > min
x2XnS

LpðgðxÞ; fðxÞ; k�ðpÞ þ eÞ:

Since LpðgðxÞ; fðxÞ; kÞ is regular, for x 2 XnS, we have

LpðgðxÞ; fðxÞ; k�ðpÞ þ eÞ > LpðgðxÞ; fðxÞ; k�ðpÞÞ:
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Thus,

/pðk�ðpÞ þ eÞ ¼ minx2X LpðgðxÞ; fðxÞ; k�ðpÞ þ eÞ
¼ minx2XnS LpðgðxÞ; fðxÞ; k�ðpÞ þ eÞ
> minx2XnS LpðgðxÞ; fðxÞ; k�ðpÞÞ
¼ minx2X LpðgðxÞ; fðxÞ; k�ðpÞÞ
¼ /pðk�ðpÞÞ:

This is a contradiction to the optimality of k�ðpÞ in problem (21).

LEMMA 5. Suppose that LpðgðxÞ; fðxÞ; kÞ is a regular GLF. For any p > 0,
if k > k�ðpÞ, then any optimal solution of (20) corresponding to k is primal
feasible for problem (1).

From Lemma 4, there must exist an optimal solution of (20) with
k ¼ k�ðpÞ, x�, that is primal feasible. Since gðx�ÞO0, for k > k�ðpÞ, we have

Lpðgðx�Þ; fðx�Þ; kÞOLpðgðx�Þ; fðx�Þ; k�ðpÞÞ: ð40Þ
Since Lp is regular, for any x 2 XnS and k > k�ðpÞ, we have

Lpðgðx�Þ; fðx�Þ; k�ðpÞÞOLpðgðxÞ; fðxÞ; k�ðpÞÞ < LpðgðxÞ; fðxÞ; kÞ ð41Þ
Combining (40) and (41), we obtain

Lpðgðx�Þ; fðx�Þ; kÞ < LpðgðxÞ; fðxÞ; kÞ; 8x 2 XnS:
Thus, any optimal solution of (20) must be primal feasible, when k > k�ðpÞ.

THEOREM 3. Suppose that the GLF LpðgðxÞ; fðxÞ; kÞ is regular. For
sufficiently large p and k > k�ðpÞ, any optimal solution of problem (20) is a
primal optimal solution of problem (1).

This conclusion can be obtained directly from Lemmas 2 and 5.

6. Illustrative examples

In this section, we present two examples to illustrate the utilization of the
GLF. We first consider Example 5.12 in [7] .

EXAMPLE 5.

min fðxÞ ¼ 3x1 þ 2x2

s.t g1ðxÞ ¼ 10� 5x1 � 2x2O7; ð42Þ
g2ðxÞ ¼ 15� 2x1 � 5x2O12;

x 2 X ¼ fx : 0Ox1O1; 0Ox2O2; 8x1 þ 8x2P1; x integerg:
Note that gi, i = 1, 2, are constructed in such a way to ensure both gi, i
= 1, 2, are strictly positive for any x 2 X. The above example problem
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can be converted into the following equivalent singly-constrained problem
using the p-norm surrogate constraint method [4] with p = 9,

min fðxÞ ¼ 3x1 þ 2x2

s.t. gðxÞ ¼ ðl1½g1ðxÞ�9 þ l2½g2ðxÞ�9Þ1=9 � 4:775O0; ð43Þ
x 2 X ¼ fx : 0Ox1O1; 0Ox2O2; 8x1 þ 8x2P1; x integerg;

where l ¼ ½0:016; 0:00013�. We now construct a regular GLF for (43) as
follows.

LpðgðxÞ; fðxÞ; kÞ ¼ Fp½SðfðxÞÞ þ TðgðxÞÞ�: ð44Þ
If we take FpðxÞ ¼ x1=p, SðfðxÞÞ ¼ fðxÞp and TðgðxÞÞ ¼ expðpkgðxÞÞ in (44),
we get the nonlinear Lagrangian formula as in Example 4,

LpðgðxÞ; fðxÞ; kÞ ¼ ½fðxÞp þ expðpkgðxÞÞ�1=p: ð45Þ
Applying formula (45) to Example 5, we obtain a relaxation problem of
(42) as follows.

min fð3x1 þ 2x2Þp þ exp½pkððl1½g1ðxÞ�9 þ l2½g2ðxÞ�9Þ1=9 � 4:775Þ�g1=pð46Þ
s.t. x 2 X ¼ fx : 0Ox1O1; 0Ox2O2; 8x1 þ 8x2P1; x integerg:

The dual function in Figure 1 demonstrates a unimodality of the dual
function with respect to k, although the magnitude of the negative slope
on the right of the maximum point is very small. For pP8, we can solve
the example problem by solving (46) for any kP52 by a branch and bound
procedure. The algorithm identifies the optimal solution x� ¼ ð0; 2Þ with
fðx�Þ ¼ 4.
If take FpðxÞ ¼ 1

p lnðxÞ; SðfðxÞÞ ¼ expðpfðxÞÞ and TðgðxÞÞ ¼ expðpkgðxÞÞ
in (44), we get the nonlinear Lagrangian formula as in Example 1,
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Figure 1. Picture of /pðkÞ ¼ minx2X½fðxÞp þ expðpkgðxÞÞ�1=p.
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LpðgðxÞ; fðxÞ; kÞ ¼
1

p
ln½expðpfðxÞÞ þ expðpkgðxÞÞ�: ð47Þ

Applying (47) to Example 5, we have

min
1

p
lnfexp½pð3x1 þ 2x2Þ� þ exp½pkððl1½g1ðxÞ�9

þ l2½g2ðxÞ9Þ�1=9 � 4:775Þ�g ð48Þ
s.t. x 2 X ¼ fx : 0Ox1O1; 0Ox2O2; 8x1 þ 8x2P1; x integerg:

The dual function in Figure 2 demonstrates a unimodality of the dual
function with respect to k, although the magnitude of the negative slope
on the right of the maximum point is very small. For any pP5, we can
solve the example problem by solving (48) for any kP148 by a branch and
bound procedure. The algorithm identifies the optimal solution x� ¼ ð0; 2Þ
with fðx�Þ ¼ 4.
If we take FpðxÞ ¼ x; SðfðxÞÞ ¼ fðxÞ and TðgðxÞÞ ¼ ð1=kÞ expðkgðxÞÞ,

where kPp > 0, in (44), we get the nonlinear Lagrangian formula as in
Example 2,

LpðgðxÞ; fðxÞ; kÞ ¼ fðxÞ þ 1

k
expðkgðxÞÞ; kPp > 0: ð49Þ

Applying (49) to Example 5, we have

min fð3x1 þ 2x2Þ þ
1

k
exp½kððl1½g1ðxÞ�9 þ l2½g2ðxÞ�9Þ1=9 � 4:775Þ�g ð50Þ

s.t. x 2 X ¼ fx : 0Ox1O1; 0Ox2O2; 8x1 þ 8x2P1; x integerg:
The dual function in Figure 3 demonstrates a unimodality of the dual
function with respect to k. For any pP1:5, we can solve the example
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Figure 2. Picture of /pðkÞ ¼ minx2X 1
p ln½expðpfðxÞÞ þ expðpkgðxÞÞ�:
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problem by solving (50) for any kPp by a branch and bound procedure.
The algorithm identifies the optimal solution x� ¼ ð0; 2Þ with fðx�Þ ¼ 4.

EXAMPLE 6. Consider a redundancy optimization problem in a network
system consisting of n subsystems. The reliability of the ith subsystem is
RiðxiÞ ¼ 1� ð1� riÞxi , where xi is the number of the same components in
parallel in the ith subsystem and ri 2 ð0; 1Þ is the given reliability of the
component in the ith subsystem. Also, denote by C(x) the total resource
consumed when adopting decision x. Consider an instance of this reliability
optimization problem with five elements and a single constraint in [12].

min QðxÞ ¼ 1� R1R2 � ð1� R2ÞR3R4 � ð1� R1ÞR2R3R4 ð51Þ
� R1ð1� R2Þð1� R3ÞR4R5 � ð1� R1ÞR2R3ð1� R4ÞR5

s.t. CðxÞ ¼ x1x2 þ 3x2x3 þ 3x2x4 þ x1x5O28;

1OxiO6; x integer; i ¼ 1; :::; 5:

where r1 ¼ 0:7; r2 ¼ 0:85; r3 ¼ 0:75; r4 ¼ 0:8; r5 ¼ 0:9. Applying formula
(45) to (51) with pP2, we can solve Example 6 for any kP8 . Applying
formula (47) to (51) with pP3, we can solve this problem for any kP3.
And applying formula (49) to (51) with any pP6:5, we can get the optimal
solution for any kPp. These three algorithms all identify the optimal solu-
tion x� ¼ ð2; 1; 4; 4; 1Þ with Qðx�Þ ¼ 0:000656.
As witnessed from above examples, adoption of the proposed GLF

transfers an integer programming problem with nonlinear constraints into
an equivalent integer programming problem with box constraints that is
easier to be solved than the original problem. Note that for a p and a k
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Figure 3. Picture of /pðkÞ ¼ minx2XffðxÞ þ 1
k expðkgðxÞÞg:
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that are sufficiently large, no dual search is needed. Thus, only one result-
ing nonlinear Lagrangian problem needs to be solved by a branch and
bound method.

7. Conclusion

The research output presented in the paper can be regarded as a unified
framework of nonlinear Lagrangian formulations that have been developed
in order to pinpoint the optimal solution of the primal problem via dual
search. Specifically, a general form of nonlinear Lagrangian functions has
been identified with which the dual search is guaranteed to generate an
optimal solution of the primal problem.
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